Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Math Biosci Eng ; 20(6): 10552-10569, 2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2303152

ABSTRACT

This study aims to use data provided by the Virginia Department of Public Health to illustrate the changes in trends of the total cases in COVID-19 since they were first recorded in the state. Each of the 93 counties in the state has its COVID-19 dashboard to help inform decision makers and the public of spatial and temporal counts of total cases. Our analysis shows the differences in the relative spread between the counties and compares the evolution in time using Bayesian conditional autoregressive framework. The models are built under the Markov Chain Monte Carlo method and Moran spatial correlations. In addition, Moran's time series modeling techniques were applied to understand the incidence rates. The findings discussed may serve as a template for other studies of similar nature.


Subject(s)
COVID-19 , Humans , Spatio-Temporal Analysis , Bayes Theorem , COVID-19/epidemiology , Markov Chains , Monte Carlo Method
2.
Annals of Data Science ; 2023.
Article in English | Scopus | ID: covidwho-2231676

ABSTRACT

This research aimed to investigate the spatial autocorrelation and heterogeneity throughout Bangladesh's 64 districts. Moran I and Geary C are used to measure spatial autocorrelation. Different conventional models, such as Poisson-Gamma and Poisson-Lognormal, and spatial models, such as Conditional Autoregressive (CAR) Model, Convolution Model, and modified CAR Model, have been employed to detect the spatial heterogeneity. Bayesian hierarchical methods via Gibbs sampling are used to implement these models. The best model is selected using the Deviance Information Criterion. Results revealed Dhaka has the highest relative risk due to the city's high population density and growth rate. This study identifies which district has the highest relative risk and which districts adjacent to that district also have a high risk, which allows for the appropriate actions to be taken by the government agencies and communities to mitigate the risk effect. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

3.
Spat Stat ; 53: 100726, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2183459

ABSTRACT

Recent disease mapping literature presents adaptively parameterized spatiotemporal (ST) autoregressive (AR) or conditional autoregressive (CAR) models for Bayesian prediction of COVID-19 infection risks. These models were motivated to capture complex spatiotemporal dynamics and heterogeneities of infection risks. In the present paper, we synthesize, generalize, and unify the ST AR and CAR model constructions for models augmented by adaptive Gaussian Markov random fields, with an emphasis on disease forecasting. A general convolution construction is presented, with illustrative models motivated to (i) characterize local risk dependencies and influences over both spatial and temporal dimensions, (ii) model risk heterogeneities and discontinuities, and (iii) predict and forecast areal-level disease risks and occurrences. The broadened constructions allow rich options of intuitive parameterization for disease mapping and spatial regression. Illustrative parameterizations are presented for Bayesian hierarchical models of Poisson, zero-inflated Poisson, and Bernoulli data models, respectively. They are also discussed in the context of quantifying time-varying or time-invariant effects of (omitted) covariates, with application to prediction and forecasting areal-level COVID-19 infection occurrences and probabilities of zero-infection. The model constructions presented herein have much wider scope in offering a flexible framework for modelling complex spatiotemporal data and for estimation, learning, and forecasting purposes.

4.
STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics and Health ; : 97-116, 2021.
Article in English | Scopus | ID: covidwho-1574356

ABSTRACT

The recent novel coronavirus (COVID-19) pandemic has been the worst in recent history regarding disease fatalities. It is therefore critical to find suitable statistical models that can be used to predict progression of the COVID-19. Such models will allow us to monitor the spread of the virus in the targeted locations and time. Data on new COVID-19 cases data on four selected countries over time were collected via Situation Reports published by the World Health Organization. The data of the neighboring countries were also considered in modelling. The Bayesian Conditional autoregressive (CAR) models are applied to the data to account for the spatial dependency in the countries along with the temporal dimension of the disease. Moran measures were also computed to compare spatial trends of the new COVID-19 cases within each country and block. Different blocks evidenced discrepancies that could be used to direct guidelines and regulations specific to those countries. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

SELECTION OF CITATIONS
SEARCH DETAIL